Proof techniques in quasi-Monte Carlo theory

نویسندگان

  • Josef Dick
  • Aicke Hinrichs
  • Friedrich Pillichshammer
چکیده

In this survey paper we discuss some tools and methods which are of use in quasiMonte Carlo (QMC) theory. We group them in chapters on Numerical Analysis, Harmonic Analysis, Algebra and Number Theory, and Probability Theory. We do not provide a comprehensive survey of all tools, but focus on a few of them, including reproducing and covariance kernels, Littlewood-Paley theory, Riesz products, Minkowski’s fundamental theorem, exponential sums, diophantine approximation, Hoeffding’s inequality and empirical processes, as well as other tools. We illustrate the use of these methods in QMC using examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Monte Carlo and Monte Carlo Methods and their Application in Finance

We give an introduction to and a survey on the use of Quasi-Monte Carlo and of Monte Carlo methods especially in option pricing and in risk management. We concentrate on new techniques from the Quasi-Monte Carlo theory.

متن کامل

Monte Carlo and quasi-Monte Carlo methods

Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N~^), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Ca...

متن کامل

Monte Carlo Extension of Quasi-monte Carlo

This paper surveys recent research on using Monte Carlo techniques to improve quasi-Monte Carlo techniques. Randomized quasi-Monte Carlo methods provide a basis for error estimation. They have, in the special case of scrambled nets, also been observed to improve accuracy. Finally through Latin supercube sampling it is possible to use Monte Carlo methods to extend quasi-Monte Carlo methods to hi...

متن کامل

Parallel Quasi-Monte Carlo Integration Using (t, s)-Sequences

Currently, the most eeective constructions of low-discrepancy point sets and sequences are based on the theory of (t; m; s)-nets and (t; s)-sequences. In this work we discuss parallelization techniques for quasi-Monte Carlo integration using (t; s)-sequences. We show that leapfrog parallelization may be very dangerous whereas block-based paral-lelization turns out to be robust.

متن کامل

Global ray-bundle tracing with infinite number of rays

The paper presents a combined nite element and quasi-random walk method to solve the general rendering equation. Applying nite element techniques, the surfaces are decomposed into planar patches that are assumed to have position independent , but not direction independent (that is non-diiuse) radiance. The direction dependent radiance function is then computed by quasi-random walk. Since quasi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015